Affiliation:
1. College of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Abstract
Insulator defect detection is of great significance to compromise the stability of the power transmission line. The state-of-the-art object detection network, YOLOv5, has been widely used in insulator and defect detection. However, the YOLOv5 network has limitations such as poor detection rate and high computational loads in detecting small insulator defects. To solve these problems, we proposed a light-weight network for insulator and defect detection. In this network, we introduced the Ghost module into the YOLOv5 backbone and neck to reduce the parameters and model size to enhance the performance of unmanned aerial vehicles (UAVs). Besides, we added small object detection anchors and layers for small defect detection. In addition, we optimized the backbone of YOLOv5 by applying convolutional block attention modules (CBAM) to focus on critical information for insulator and defect detection and suppress uncritical information. The experiment result shows the mean average precision (mAP) is set to 0.5, and the mAP is set from 0.5 to 0.95 of our model and can reach 99.4% and 91.7%; the parameters and model size were reduced to 3,807,372 and 8.79 M, which can be easily deployed to embedded devices such as UAVs. Moreover, the speed of detection can reach 10.9 ms/image, which can meet the real-time detection requirement.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献