Assessment of the Continuous Extreme Drought Events in Namibia during the Last Decade

Author:

Liu Xuan,Zhou JieORCID

Abstract

In the context of climate change, the intensity, frequency, and duration of drought events have increased significantly, resulting in a profound impact on both natural ecosystems and socio-economic systems. In arid and semi-arid regions, precipitation is the main limiting factor for vegetation growth, and the ecosystems are very sensitive to climate change. Over the past 10 years, the Namibian government has declared national emergencies in 2013, 2016, and 2019 due to extreme drought events. The continued extreme drought has posed serious threat to the country’s food security. Accurately monitoring the continuous drought events in Namibia and assessing their impact on the ecosystem is essential for drought risk management in the region. Based on long-term satellite observation of vegetation index and precipitation, we have evaluated the spatiotemporal dynamics of the three drought events, the vegetation–precipitation relationship across biomes, and the impact of continuous drought events on regional ecosystems. The results suggest that: (1) According to affected area and severity, the drought in 2019 was the most severe one, followed by the drought in 2013; the 2015–2016 drought spread over smaller spatial area, although it continued for two years; (2) Both the accumulated NDVI and precipitation in the growing season in Namibia increased from 2001 to 2010 while showing a significant decreasing trend during 2011–2020; (3) In Namibia, there is a significant correlation between the current season’s accumulated precipitation and the current season’s accumulated NDVI (r = 0.90, p < 0.01). The current season’s accumulated precipitation is also well correlated with the next season’s accumulated NDVI (r = 0.87, p < 0.01), and the correlation between the current season’s accumulated precipitation and the next season’s accumulated NDVI in a wet year is even stronger (r = 0.96, p < 0.01). This indicates that part of the precipitation in the current season may be stored in the soil for the next season’s plant growth, which is more obvious in the northern plains with deep-rooted woody plants; (4) In 2013, the drought event suddenly changed from a long-term relatively humid state to an extremely dry state. During the ecological recovery stage, the NDVI during the growing season could not return to the state before the drought, causing irreversible damage to the Namibian ecosystem. In summary, the continuous extreme drought events during the last decade have caused profound impacts on the regional ecosystem. Much more attention should be paid to whether the extreme drought events will continue into the next decade and how the ecosystem can sustain a new equilibrium under a warmer and drier climate.

Funder

National Key Research and Development Program of China

Central China Normal University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference62 articles.

1. Drought as a Natural Hazard: Concepts and Definitions;Wilhite,2000

2. Drought in South Africa, with Special Reference to the 1980–94 Period;Vogel,2000

3. Drought and Natural Resources Management in The United States: Impacts and Implications of the 1987–89 Drought;Riebsame,2019

4. Human Development Report 2011. Sustainability and Equity: A Better Future for All;Klugman,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3