Spectral imaging of grass species in arid ecosystems of Namibia

Author:

Bantelmann Paul,Wyss Daniel,Pius Elizabeth Twitileni,Kappas Martin

Abstract

Grasslands across the African continent are under pressure from climate change and human activities, particularly in arid ecosystems. From a remote sensing perspective, these ecosystems have not received much scientific attention, especially in Namibia. To address this knowledge gap, various remote sensing methods were implemented using new generation spaceborne imaging spectrometers amongst others. Therefore, this research provides a first methodological approach aimed at mapping and evaluating the distribution of grasslands within two private nature reserves, namely, the NamibRand Nature Reserve (NRNR) and ProNamib Nature Reserve (PNNR) with surrounding farmlands on the edge of Namib Sand Sea. The multi-sensor approach utilizes Mixture Tuned Matched Filtering (MTMF) and incorporated spectral information collected in the field to analyze grasslands. The research involves a sensor comparison of multispectral Sentinel-2 and PlanetScope data, hyperspectral data from Environmental Mapping and Analysis Programme (EnMAP) and PRecursore IperSpettrale della Missione Applicativa (PRISMA) and an additional data fusion product derived from Sentinel-2 and EnMAP imagery based on a Smoothing Filter-based Intensity Modulation Hypersharpening method (SFIM-HS). Additionally, a unique spectral library of collected field spectra was established and inter-species spectral separability and intra-species spectral homogeneity was analyzed. This library presents newly published spectra of individual species. Due to dry initial conditions, the calculated spectral separability of individual grasses is limited, making only a mean endmember feasible for partial unmixing. The validation results of satellite comparison show that data fusion products (R2 = 0.51 with Normalized Difference Vegetation Index (NDVI); R2 = 0.66 with Soil Adjusted Vegetation Index (SAVI)) are more suitable for mapping arid grasslands than multispectral or hyperspectral data (all R2 < 0.35). More research is required and potential methodological adjustments are discussed to further investigate the spatio-temporal dynamics of arid grasslands and to aid conservation efforts in the Greater Sossusvlei-Namib Landscape in line with the United Nations Decade of Restoration.

Publisher

Frontiers Media SA

Reference184 articles.

1. PRISMA spatial resolution enhancement by fusion with sentinel-2 data;Acito;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2022

2. Satellite remote sensing of grasslands: from observation to management;Ali;JPECOL,2016

3. Drone-based multispectral imagery is effective for determining forage availability in arid savannas;Amputu,2022

4. Unmanned aerial systems accurately map rangeland condition indicators in a dryland savannah;Amputu;Ecol. Inf.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3