Microstructural Changes and Strengthening of Austenitic Stainless Steels during Rolling at 473 K

Author:

Odnobokova MarinaORCID,Belyakov AndreyORCID,Enikeev NarimanORCID,Kaibyshev Rustam,Valiev Ruslan Z.

Abstract

The microstructural changes in 304L and 316L austenitic stainless steels during plate rolling with 95% rolling reduction at a temperature of 473 K and their effect on strengthening were studied. The microstructure evolution was associated with deformation twinning and microshear banding. The latter ones involved ultrafine crystallites, which rapidly evolved in strain-induced ultrafine austenite grains as a result of fast increase in misorientations between them. Besides the ultrafine austenite crystallite evolution, the microshear bands assisted local appearance of deformation martensite, which attained about 25 vol.% and 3 vol.% at total strain of 3 in 304L and 316L steels, respectively. Both the microshear banding and the martensitic transformation promoted the formation of ultrafine grains with a size of less than 1 µm. The strain dependence of the ultrafine grain fraction obeyed a modified Johnson-Mehl-Avrami-Kolmogorov function. The deformation grain size and dislocation density that develop during rolling could also be expressed by exponential functions of true strain. Incorporating the revealed relationships between the strain and the microstructural parameters into modified Hall–Petch-type equation, unique expression for the yield strength of processed steels was obtained. The dislocation strengthening was the largest contributor to the strength, especially at small to medium strains, although grain size strengthening increased during rolling approaching that from dislocations at large strains.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3