Mitigating Stress Corrosion Cracking of 304L and 316L Laser Welds in a Salt Spray through Micro-Shot Peening

Author:

Kang Chia-Ying1,Chen Tai-Cheng23ORCID,Shiue Ren-Kae3ORCID,Tsay Leu-Wen1ORCID

Affiliation:

1. Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan

2. Department of Material Research, National Atomic Research Institute, Taoyuan 32546, Taiwan

3. Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

Two austenitic stainless steel (ASS) plates, 304L and 316L, were cold-rolled (304R and 316R) with a 10% reduction in thickness and then subjected to laser welding. Cold rolling caused slight surface hardening and introduced residual tensile stress into the ASS plates. The susceptibility to stress corrosion cracking (SCC) of the welds (304RW and 316RW) was determined using the U-bend test pieces in a salt spray. To highlight the stress concentration at the weld’s fusion boundary (FB), the top weld reinforcement was not ground off before bending. Moreover, micro-shot peening (MSP) was performed to mitigate the SCC of the welds by imposing high residual compressive stress and forming a fine-grained structure. Cold rolling increased the susceptibility of the 304R specimen to pitting corrosion and intergranular (IG) microcracking. Moreover, pitting corrosion and SCC were found more often at the FBs of the 304RW. The corrosion pits of the peened 304RW (304RWSP) were finer but greater in amount than the those of the un-peened one. The results also indicated that the 316L ASS welds with MSP were resistant to the incidence of pitting corrosion and SCC in a salt spray. The better reliability and longer service life of dry storage canisters could be achieved by using 316L ASS for the construction and application of MSP on it.

Funder

Ministry of Science and Technology, R.O.C.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3