Experimental and Numerical Analysis of Fatigue Life of Aluminum Al 2024-T351 at Elevated Temperature

Author:

Mazlan ShahanORCID,Yidris NoorfaizalORCID,Koloor Seyed Saeid RahimianORCID,Petrů MichalORCID

Abstract

This paper presents the prediction of the fatigue life of aluminum Al 2024-T351 at room and elevated temperatures under uniaxial loading using finite element simulation. Structural parts such as fuselage, wings, aircraft turbines and heat exchangers are required to work safely at this working condition even with decreasing fatigue strength and other properties. The monotonic tensile and cyclic tests at 100 °C and 200 °C were conducted using MTS 810 servo hydraulic equipped with MTS 653 high temperature furnace at a frequency of 10 Hz and load ratio of 0.1. There was an 8% increase in the yield strength and a 2.32 MPa difference in the ultimate strength at 100 °C. However, the yield strength had a 1.61 MPa difference and 25% decrease in the ultimate strength at 200 °C compared to the room temperature. The mechanical and micro-structural behavior at elevated temperatures caused an increase in the crack initiation and crack propagation which reduced the total fatigue life. The yield strength, ultimate strength, alternating stress, mean stress and fatigue life were taken as the input in finite element commercial software, ANSYS. Comparison of results between experimental and finite element methods showed a good agreement. Hence, the suggested method using the numerical software can be used for predicting the fatigue life at elevated temperature.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference54 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3