Study of the Effect of the Floating Die Compaction on Mechanical Properties of Titanium Foams

Author:

Sauceda SergioORCID,Lascano SheilaORCID,Béjar Luis,Neves Guilherme O.ORCID,Chicardi ErnestoORCID,Salvo ChristopherORCID,Aguilar ClaudioORCID

Abstract

Titanium (Ti) and its alloys are used for biomedical applications because of their high resistance to corrosion, good strength-to-weight ratio, and high fatigue resistance. However, a problem that compromises the performance of the material is the mismatch between Young’s modulus of Ti and the bone, which brings about stress shielding. One strategy that has been investigated to reduce this difference is the manufacture of Ti-based foams, using powder metallurgy (PM) methods, such as the space-holder technique. However, in the uniaxial compaction, both non-uniform density distribution and mechanical properties remain because of the compaction method. This work studies the influence of compaction by adopting a floating-action die related to a single-action die (SAD), on the density of green and sintered Ti foams with porosities around 50 vol.% characterized by optical microscopy, ultrasound analysis, compression tests, and microhardness. The compaction process employing a floating-action die generates Ti foams with a higher density up to 10% with more control of the spacer particle added compared to the single-action die. Furthermore, compaction method has no relevant effect on microhardness and Young’s modulus, which allows getting better consolidated samples with elastic modules similar to those of human bone.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3