Abstract
The AA7050 alloy prepared through the standard industrial hot-forging cycle has been investigated by means of isothermal mechanical spectroscopy (MS) from room temperature up to 185 °C. Each MS test consisted of a cycle with two stages, at increasing and decreasing strain. After each cycle the damping value resulted to be higher than the original one indicating the occurrence of an irreversible transformation. Such phenomenon, observed for all the test temperatures, becomes more relevant for T ≥ 150 °C. The irreversible transformation has been discussed and explained by considering the evolution of the mean dislocation link length between pinning points represented by nanometric MgZn2 precipitates. The breakaway of dislocation segments from pinning points occurs in the stage at increasing strain and is not fully recovered during the second stage at decreasing strain thus the mean link length increases in a MS test cycle. The onset of thermal activated dislocation cross-slip at about 150 °C favors the dislocation breakaway and consequently enhances the effect on damping.
Subject
General Materials Science,Metals and Alloys
Reference45 articles.
1. Developments and challenges for aluminium—A Boeing perspective;Warren;Mater. Forum,2004
2. Alloys for Aeronautic Applications: State of the Art and Perspectives
3. Aerospace Structural Materials Handbook,2001
4. Microstructural characterisation of material adhered over cutting tool in the dry machining of aerospace aluminium alloys
5. Aluminium Alloys for Aerospace Applications;Rambabu,2017
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献