Application of the Theory of Critical Distance (TCD) to the Breakage of Cardboard Cutting Blades in Al7075 Alloy

Author:

Morettini Giulia1ORCID,Landi Luca1ORCID,Burattini Luca1,Stornelli Giulia1ORCID,Foffi Gianluca2,Di Schino Andrea1ORCID,Cianetti Filippo1ORCID,Braccesi Claudio1

Affiliation:

1. Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

2. C.M.C. S.p.A., Via C. Marx 13/c, 06012 Città di Castello, Italy

Abstract

The study presented in this paper was undertaken in response to two instances of unexpected blade breakage in the cutting blade used in a Carton Wrap machine (CW). Failure of the Al7075 alloy blade occurred at an indentation during typical operational loading conditions. Subsequent metallographic examinations of the fractured samples confirmed that both cases were attributed to fatigue failure. The main objective of this study is to investigate potential causes of fatigue failure in the CW blade using simplified linear elastic static numerical simulations through Finite Element Analysis (FEA). In this research, we employed the well-established Theory of Critical Distance (TCD), and this case study provided a contextualization at an industrial level. Furthermore, the analysis focused on a second key aspect: proposing a new blade geometry aimed at mitigating the identified issues and eliminating possible causes of failure. In this context, the actual stress concentration at the indentation was determined using the TCD with Line Method (LM). The results from the numerical simulations indicated that the new blade geometry significantly reduced stress concentration, resulting in a risk factor reduction of approximately four compared to the original blade design, even under non-optimal operating conditions. Overall, in conjunction with simple linear static FEA, the proposed numerical approach provided substantial support for designers, especially in fault analysis and when comparing different industrial solutions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3