Adjusting Emergent Herbaceous Wetland Elevation with Object-Based Image Analysis, Random Forest and the 2016 NLCD

Author:

Muñoz DavidORCID,Cissell JordanORCID,Moftakhari HamedORCID

Abstract

Emergent herbaceous wetlands are characterized by complex salt marsh ecosystems that play a key role in diverse coastal processes including carbon storage, nutrient cycling, flood attenuation and shoreline protection. Surface elevation characterization and spatiotemporal distribution of these ecosystems are commonly obtained from LiDAR measurements as this low-cost airborne technique has a wide range of applicability and usefulness in coastal environments. LiDAR techniques, despite significant advantages, show poor performance in generation of digital elevation models (DEMs) in tidal salt marshes due to large vertical errors. In this study, we present a methodology to (i) update emergent herbaceous wetlands (i.e., the ones delineated in the 2016 National Land Cover Database) to present-day conditions; and (ii) automate salt marsh elevation correction in estuarine systems. We integrate object-based image analysis and random forest technique with surface reflectance Landsat imagery to map three emergent U.S. wetlands in Weeks Bay, Alabama, Savannah Estuary, Georgia and Fire Island, New York. Conducting a hyperparameter tuning of random forest and following a hierarchical approach with three nomenclature levels for land cover classification, we are able to better map wetlands and improve overall accuracies in Weeks Bay (0.91), Savannah Estuary (0.97) and Fire Island (0.95). We then develop a tool in ArcGIS to automate salt marsh elevation correction. We use this ‘DEM-correction’ tool to modify an existing DEM (model input) with the calculated elevation correction over salt marsh regions. Our method and tool are validated with real-time kinematic elevation data and helps correct overestimated salt marsh elevation up to 0.50 m in the studied estuaries. The proposed tool can be easily adapted to different vegetation species in wetlands, and thus help provide accurate DEMs for flood inundation mapping in estuarine systems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3