Effect of Oxygen Concentration and Tantalum Addition on the Formation of High Temperature Bismuth Oxide Phase by Mechanochemical Reaction

Author:

Lin Hsiu-Na,Chen May-Show,Chang Yu-Hsueh,Lee Pee-Yew,Lin Chung-KweiORCID

Abstract

High-temperature face-centered cubic bismuth oxide phase is a material of great interest given its unique properties. In the present study, α-Bi2O3 and tantalum powders were used as the starting powders for the formation of high-temperature bismuth oxide phase via mechanochemical synthesis by high energy ball milling. (Bi2O3)80(Ta)20 and (Bi2O3)95(Ta)5 in weight concentrations were milled in either an oxygen-free argon-filled glove box environment or an ambient atmosphere to investigate the effects of oxygen concentration and tantalum addition. The as-milled powders were examined using X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, and differential scanning calorimetry to reveal the structural evolution. The experimental results showed that for (Bi2O3)95(Ta)5 powder mixtures milled within the glove box, tantalum gradually reacted with the α-Bi2O3 phase and formed a β-Bi7.8Ta0.2O12.2 phase. For (Bi2O3)80(Ta)20 milled under the same conditions, Ta and α-Bi2O3 mechanochemically reacted to form δ-Bi3TaO7 and bismuth after 10 min of high energy ball milling, whereas milling (Bi2O3)80(Ta)20 under the ambient atmosphere with a much higher oxygen concentration accelerated the mechanochemical reaction to less than five minutes of milling and resulted in the formation of high-temperature δ-Bi3TaO7 phase.

Funder

Chang Gung Memorial Hospital

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3