Effect of Tantalum Pentoxide Addition on the Radiopacity Performance of Bi2O3/Ta2O5 Composite Powders Prepared by Mechanical Milling

Author:

Lin Hsiu-Na,Lin Chung-KweiORCID,Chang Pei-Jung,Chang Wei-MinORCID,Fang Alex,Chen Chin-YiORCID,Yu Chia-Chun,Lee Pee-Yew

Abstract

Among the various phases of bismuth oxide, the high temperature metastable face-centered cubic δ phase attracts great attention due to its unique properties. It can be used as an ionic conductor or an endodontic radiopacifying material. However, no reports concerning tantalum and bismuth binary oxide prepared by high energy ball milling and serving as a dental radiopacifier can be found. In the present study, Ta2O5-added Bi2O3 composite powders were mechanically milled to investigate the formation of these metastable phases. The as-milled powders were examined by X-ray diffraction and scanning electron microscopy to reveal the structural evolution. The as-milled composite powders then served as the radiopacifier within mineral trioxide aggregates (i.e., MTA). Radiopacity performance, diametral tensile strength, setting times, and biocompatibility of MTA-like cements solidified by deionized water, saline, or 10% calcium chloride solution were investigated. The experimental results showed that subsequent formation of high temperature metastable β-Bi7.8Ta0.2O12.2, δ-Bi2O3, and δ-Bi3TaO7 phases can be observed after mechanical milling of (Bi2O3)95(Ta2O5)5 or (Bi2O3)80(Ta2O5)20 powder mixtures. Compared to its pristine Bi2O3 counterpart with a radiopacity of 4.42 mmAl, long setting times (60 and 120 min for initial and final setting times) and 84% MG-63 cell viability, MTA-like cement prepared from (Bi2O3)95(Ta2O5)5 powder exhibited superior performance with a radiopacity of 5.92 mmAl (the highest in the present work), accelerated setting times (the initial and final setting time can be shortened to 25 and 40 min, respectively), and biocompatibility (94% cell viability).

Funder

Chang Gung Memorial Hospital, Linkou

University System of Taipei Joint Research Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3