Study on In-Situ Synthesis Process of Ti–Al Intermetallic Compound-Reinforced Al Matrix Composites

Author:

Wan Qiong,Li FuguoORCID,Wang Wenjing,Hou Junhua,Cui Wanyue,Li Yongsheng

Abstract

In this study, ball-milled powder of Ti and Al was used to fabricate Ti–Al intermetallic compound-reinforced Al matrix composites by an in-situ reaction in cold-pressing sintering and hot-pressing sintering processes. The detailed microstructure of the Ti–Al intermetallic compound-reinforced Al composite was characterized by optical microscopy (OM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), and electron backscattered diffraction (EBSD). The results indicate that a typical core–shell-like structure forms in the reinforced particles. The shell is composed of a series of Ti–Al intermetallic compounds and has good bonding strength and compatibility with the Al matrix and Ti core. With cold-pressing sintering, the shell around the Ti core is closed, and the shell thickness increases as the milling time and holding time increase. With hot-pressing sintering, some radiating cracks emerge in the shell structure and provide paths for further diffusion of Ti and Al atoms. The Kirkendall effect, which is caused by the difference between the diffusion coefficients of Ti and Al, results in the formation of cavities and a reduction in density degree. When the quantity of the intermetallic compounds increases, the hardness of the composites increases and the plasticity decreases. Therefore, factors that affect the quantity of the reinforcements, such as the milling time and holding time, should be determined carefully to improve the comprehensive properties of the composites.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3