Associations between Periodontitis and COPD: An Artificial Intelligence-Based Analysis of NHANES III

Author:

Vollmer AndreasORCID,Vollmer Michael,Lang GernotORCID,Straub AntonORCID,Shavlokhova Veronika,Kübler Alexander,Gubik Sebastian,Brands Roman,Hartmann Stefan,Saravi BabakORCID

Abstract

A number of cross-sectional epidemiological studies suggest that poor oral health is associated with respiratory diseases. However, the number of cases within the studies was limited, and the studies had different measurement conditions. By analyzing data from the National Health and Nutrition Examination Survey III (NHANES III), this study aimed to investigate possible associations between chronic obstructive pulmonary disease (COPD) and periodontitis in the general population. COPD was diagnosed in cases where FEV (1)/FVC ratio was below 70% (non-COPD versus COPD; binary classification task). We used unsupervised learning utilizing k-means clustering to identify clusters in the data. COPD classes were predicted with logistic regression, a random forest classifier, a stochastic gradient descent (SGD) classifier, k-nearest neighbors, a decision tree classifier, Gaussian naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural network (CNN), a multilayer perceptron artificial neural network (MLP), and a radial basis function neural network (RBNN) in Python. We calculated the accuracy of the prediction and the area under the curve (AUC). The most important predictors were determined using feature importance analysis. Results: Overall, 15,868 participants and 19 feature variables were included. Based on k-means clustering, the data were separated into two clusters that identified two risk characteristic groups of patients. The algorithms reached AUCs between 0.608 (DTC) and 0.953% (CNN) for the classification of COPD classes. Feature importance analysis of deep learning algorithms indicated that age and mean attachment loss were the most important features in predicting COPD. Conclusions: Data analysis of a large population showed that machine learning and deep learning algorithms could predict COPD cases based on demographics and oral health feature variables. This study indicates that periodontitis might be an important predictor of COPD. Further prospective studies examining the association between periodontitis and COPD are warranted to validate the present results.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3