Abstract
The process of fermenting tofu extends back thousands of years and is an indispensable part of Chinese culture. Despite a cultural resurgence in fermented foods and interest in microbiomes, there is little knowledge on the microbial diversity represented in fermented ‘hairy’ tofu, known locally in China as Mao tofu. High-throughput metagenomic sequencing of the ITS, LSU and 16S rDNA was used to determine Mao tofu’s fungal and bacterial community diversity across four wet markets in Yunnan, China. The results show that hairy tofu in this region consists of around 170 fungal and 365 bacterial taxa, and that microbial taxa differ between markets. Diversity also differed based on the specific niche of the tofu block, comparing the outside rind-like niche to that of the inside of the tofu block. Machine learning random forest models were able to accurately classify both the market and niche of sample origin. An over-abundance of yeast and Geotrichum was found, and Mucor (Mucoromycota) was abundant in the outside rind-like niche, which consists of the visible ‘hairy’ mycelium. The majority of the bacterial OTUs belonged to Proteobacteria, Firmicutes, and Bacteroidetes, with Acinetobacter, Lactobacillus, Sphingobacterium and Flavobacterium the most abundant genera. Putative fungal pathogens of plants (Cercospora, Diaporthe, Fusarium) and animals (Metarhizium, Entomomortierella, Pyxidiophora, Candida, Clavispora) were also detected, as were putative bacterial pathogens identified as Legionella. Non-fungal eukaryotic taxa detected by LSU amplicon sequencing included soybean (Glycine max), Protozoa, Metazoa (e.g., Nematoda and Platyhelminthes), Rhizaria and Chromista, indicating that additional biodiversity exists in the hairy tofu microbiome.
Funder
National Science Foundation
United States Department of Agriculture
CAS poverty alleviation project
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献