Effects of Landscape and Local Factors on the Diversity of Flower-Visitor Groups under an Urbanization Gradient, a Case Study in Wuhan, China

Author:

He Mengyu,Ran Nan,Jiang Huiqian,Han Zemin,Dian Yuanyong,Li Xiaoxia,Xie DongORCID,Bowler Peter A.,Wang Hui

Abstract

Urbanization is one of the primary forces driving worldwide pollinator decline. Moderate urban expansion with appropriate green space planning can help in maintaining pollinator diversity and pollination service. We investigated the relative effects of landscape and local factors on the diversity of flower-visitor functional groups in a moderately urbanized city, Wuhan, located in central China. We found that the proportion of impervious surface had no significant effect on the number of visitations, but it was negatively associated with the diversity of flower-visitor groups. The number of visitations by Halictidae and Lepidoptera correlated positively with local flower density and flowering plant species richness, respectively. Flowering plant species richness was also positively correlated with the diversity of flower-visitor groups. The proportion of green space was negatively associated with the visitation number of Muscidae and the overall diversity of flower-visitor groups, revealing the potential influence of green space quality on pollinator assemblage. The pollination networks under three urbanization levels (with a total of 11 flower visitor groups and 43 plant species) were asymmetric, highly nested, and generalized. The suburb sites contained the highest diversity of interactions. Core flowering plants (Oenothera speciosa, Coreopsis grandiflora and Cyanus segetum) are exotic species with attractive flowers. Improving green space quality (high flower density and flowering plant species richness) and using attractive native flowering plants (Nandina domestica, Rosa chinensis, Astragalus sinicus, Cirsium arvense var. integrifolium, and Zabelia biflora) would enhance the function of urban green space to maintain pollinator diversity and ecosystem stability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3