Multivariate Regression in Conjunction with GA-BP for Optimization of Data Processing of Trace NO Gas Flow in Active Pumping Electronic Nose

Author:

Sun Pengjiao12ORCID,Shi Yunbo134,Shi Yeping12ORCID

Affiliation:

1. The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China

2. Electronics and Communication Engineering School, Jilin Technology College of Electronic Information, Jilin 132021, China

3. Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China

4. National Experimental Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Exhaled nitric oxide trace gas at the ppb level is a biomarker of human airway inflammation. To detect this, we developed a method for the collection of active pumping electronic nose bionic chamber gas. An optimization algorithm based on multivariate regression (MR) and genetic algorithm–back propagation (GA-BP) was proposed to improve the accuracy of trace-level gas detection. An electronic nose was used to detect NO gas at the ppb level by substituting breathing gas with a sample gas. The impact of the pump suction flow capacity variation on the response of the electronic nose system was determined using an ANOVA. Further, the optimization algorithm based on MR and GA-BP was studied for flow correction. The results of this study demonstrate an increase in the detection accuracy of the system by more than twofold, from 17.40%FS before correction to 6.86%FS after correction. The findings of this research lay the technical groundwork for the practical application of electronic nose systems in the daily monitoring of FeNO.

Funder

National Natural Science Foundation of China

National Defense Basic Scientific Research Program of China

“13th five-year plan” Scientific Research Planning Program from the Jilin Provincial Department of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3