Performance Characteristics of Automobile Air Conditioning Using the R134a/R1234yf Mixture

Author:

Shin Yunchan,Kim Taejung,Lee Areum,Cho Honghyun

Abstract

In this study, the energy and exergy of an automobile refrigeration system using R134a and R134a/R1234yf were analyzed experimentally with respect to outdoor air temperature and compressor speed. As outdoor air temperature increased from 32.5 °C to 37.5 °C, the coefficient of performance (COP) and total exergy destruction rate of the refrigeration system using Mix30 decreased by 5.19% and 25.8% on average, compared to that of the system using R134a. The exergy efficiency of the Mix30 refrigeration system was on average 21.8% higher than that of the R134a system. As the compressor rotating speed increased from 1000 to 2000 rpm, the cooling capacity of the refrigeration system using R134a and R134a/R1234yf increased, while the COP decreased. The COP and total exergy destruction rate of the refrigeration system using Mix30 decreased by 4.82% and 19.5%, compared to that of the system using R134a. The exergy efficiency of the Mix30 refrigeration system increased on average by 20.7%, compared to that of the R134a system. The total exergy destruction rate of the automobile refrigeration system using R134a/R1234yf decreased with increase in R1234yf, while exergy efficiency increased. In addition, the exergy destruction rate of the automobile refrigeration system decreased as the amount of R1234yf in the R134a/R1234yf automobile refrigeration system increased.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3