Advancements in Nanomaterial Dispersion and Stability and Thermophysical Properties of Nano-Enhanced Phase Change Materials for Biomedical Applications

Author:

Zhang Qian12,Le Tkhu Chang12,Zhao Shuang12,Shang Chenxi12,Hu Menglin12,Zhang Su12,Liu Yushi3,Pan Shuang12

Affiliation:

1. The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China

2. School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China

3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

Abstract

Phase change materials (PCMs) are materials that exhibit thermal response characteristics, allowing them to be utilized in the biological field for precise and controllable temperature regulation. Due to considerations of biosafety and the spatial limitations within human tissue, the amount of PCMs used in medical applications is relatively small. Therefore, researchers often augment PCMs with various materials to enhance their performance and increase their practical value. The dispersion of nanoparticles to modify the thermophysical properties of PCMs has emerged as a mature concept. This paper aims to elucidate the role of nanomaterials in addressing deficiencies and enhancing the performance of PCMs. Specifically, it discusses the dispersion methods and stabilization mechanisms of nanoparticles within PCMs, as well as their effects on thermophysical properties such as thermal conductivity, latent heat, and specific heat capacity. Furthermore, it explores how various nano-additives contribute to improved thermal conductivity and the mechanisms underlying enhanced latent heat and specific heat. Additionally, the potential applications of PCMs in biomedical fields are proposed. Finally, this paper provides a comprehensive analysis and offers suggestions for future research to maximize the utilization of nanomaterials in enhancing the thermophysical properties of PCMs for biomedical applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3