Recent advances in energy storage and applications of form‐stable phase change materials with recyclable skeleton

Author:

Jia Yuan1,Jiang Yaoting1,Pan Yunshi2,Zou Xinmei1,Zhang Qian3,Gao Xiaojian2,Zhang Jingxi1,Yu Kunyang2,Yang Yingzi2,Liu Yushi2ORCID

Affiliation:

1. College of Materials Science and Engineering, North China University of Science and Technology, Hebei Provincial Laboratory of Inorganic Nonmetallic Materials, Hebei Provincial Industrial Solid Waste Comprehensive Utilization Technology Innovation Center Hebei Iron and Steel Laboratory Tangshan China

2. School of Civil Engineering Harbin Institute of Technology Harbin China

3. The First Affiliated Hospital of Harbin Medical University, School of Stomatology Harbin Medical University Harbin China

Abstract

AbstractWith the expansion of the global population, the energy shortage is becoming increasingly acute. Phase change materials (PCMs) are considered green and efficient mediums for thermal energy storage, but the leakage problem caused by volume instability during phase change limits their application. Encapsulating PCMs with supporting materials can effectively avoid leakage, but most supporting materials are expensive and consume huge of natural resources. Carbon materials, which are rich and renewable resources, can be used as economical and environmentally friendly supporting skeletons to prepare form‐stable PCMs. Although many researchers have begun to use recyclable materials especially various derivatives of carbon as supporting skeletons to prepare form‐stable PCMs, the preparation methods, thermophysical properties and applications of form‐stable PCMs with recyclable skeletons have rarely been systematically summarized yet. Form‐stable PCMs with a recyclable skeleton can be used as green and efficient thermal storage materials due to their high heat storage capacity and good thermophysical stability after 2000 thermal cycles. This review investigates the effects of recyclable skeletons on the thermophysical properties including phase change temperature, latent heat, thermal conductivity, supercooling, and thermal cycling reliability. Four major kinds of recyclable skeletons are focused on: biomass, biochar, industrial by‐products as well as waste incineration ash. Additionally, the application scales of form‐stable PCMs with recyclable skeletons are explicated in depth. Moreover, the main challenges confronted by form‐stable PCMs with recyclable skeletons are discussed, and future research trends are proposed. This article provides a systematic review of the form‐stable PCMs with recyclable skeletons, giving significant guidance for further reducing carbon emissions and promoting the development of sustainable energy.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3