Efficient Prediction of Stability Boundaries in Milling Considering the Variation of Tool Features and Workpiece Materials

Author:

Sun Huijuan1,Ding Huiling2,Deng Congying2,Xiong Kaixiang2

Affiliation:

1. School of Mechanical Engineering and Automation, Chongqing Industry Polytechnic College, Chongqing 401120, China

2. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

Theoretical stability analysis is a significant approach to predicting chatter-free machining parameters. Accurate milling stability predictions highly depend on the dynamic properties of the process system. Therefore, variations in tool and workpiece attributes will require repeated and time-consuming experiments or simulations to update the tool tip dynamics and cutting force coefficients. Considering this problem, this paper proposes a transfer learning framework to efficiently predict the milling stabilities for different tool–workpiece assemblies through reducing the experiments or simulations. First, a source tool is selected to obtain the tool tip frequency response functions (FRFs) under different overhang lengths through impact tests and milling experiments on different workpiece materials conducted to identify the related cutting force coefficients. Then, theoretical milling stability analyses are developed to obtain sufficient source data to pre-train a multi-layer perceptron (MLP) for predicting the limiting axial cutting depth (aplim). For a new tool, the number of overhang lengths and workpiece materials are reduced to design and perform fewer experiments. Then, insufficient stability limits are predicted and further utilized to fine-tune the pre-trained MLP. Finally, a new regression model to predict the aplim values is obtained for target tool–workpiece assemblies. A detailed case study is developed on different tool–workpiece assemblies, and the experimental results validate that the proposed approach requires fewer training samples for obtaining an acceptable prediction accuracy compared with other previously proposed methods.

Funder

Chongqing Natural Science Foundation

Chongqing Municipal Education Commission

Doctoral Fund of Chongqing Industry Polytechnic College

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3