Abstract
Emotion classification is a research area in which there has been very intensive literature production concerning natural language processing, multimedia data, semantic knowledge discovery, social network mining, and text and multimedia data mining. This paper addresses the issue of emotion classification and proposes a method for classifying the emotions expressed in multimodal data extracted from videos. The proposed method models multimodal data as a sequence of features extracted from facial expressions, speech, gestures, and text, using a linguistic approach. Each sequence of multimodal data is correctly associated with the emotion by a method that models each emotion using a hidden Markov model. The trained model is evaluated on samples of multimodal sentences associated with seven basic emotions. The experimental results demonstrate a good classification rate for emotions.
Subject
Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献