A Two-Stage Multi-Modal Multi-Label Emotion Recognition Decision System Based on GCN

Author:

Wu Weiwei1,Chen Daomin2,Li Qingping1

Affiliation:

1. Zhejiang Yuying College of Vocational Technology, China

2. Guangdong University of Science and Technology, China

Abstract

Compared with single-modal methods, emotion recognition research is increasingly focusing on the use of multi-modal methods to improve accuracy. Despite the advantages of multimodality, challenges such as feature fusion and redundancy remain. In this study, we propose a multi-modal multi-label emotion recognition decision system based on graph convolution. Our approach utilizes text, speech, and video data for feature extraction, while combining tag attention to capture fine-grained modal dependencies. The two-stage feature reconstruction module facilitates complementary feature fusion while preserving mode-specific information. Emotional decisions are made using a fully connected layer to optimize performance without adding complexity to the model. Experimental results on IEMOCAP, CMU-MOSEI and MELD datasets show that our algorithm has higher accuracy than existing models, highlighting the effectiveness and innovation of our proposed algorithm.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3