The Effects of Accentuated Eccentric Loading on Mechanical Variables and Agonist Electromyography during the Bench Press

Author:

Castro Alexis H.,Zangakis Dylan,Moir Gavin L.ORCID

Abstract

We compared the effects of accentuated eccentric loading (AEL) on mechanical variables and agonist muscle activation using low (30% 1-repetition maximum (1RM)) and high (80% 1RM) upward-phase loading with AEL (100% 1RM during downward phase) to traditional loading schemes (T) in the bench press. Twelve resistance-trained men (26 ± 6 years; 1RM: 134 ± 33 kg) performed sets of two repetitions with three-minute intervals using loading schemes of 30AEL, 30T, 80AEL, and 80T. AEL was applied using weight releasers while force plates and a 3D motion-analysis system were used to measure mechanical variables. Electromyographic activity of the pectoralis major and triceps brachii muscles was also recorded. The greater downward-phase loads experienced during the AEL conditions allowed greater overall mean vertical forces (mean difference ( x ¯ Diff): 118 N, p < 0.001), greater work ( x ¯ Diff: 43 J, p < 0.001), and greater pectoralis major muscle activation ( x ¯ Diff: 27 µV, p = 0.002) compared to the corresponding traditional loading schemes. However, there was little evidence of potentiation of the mechanical variables or muscle activity during the subsequent upward phases caused by the AEL schemes. It is possible that the use of weight releasers may disrupt lifting technique particularly during low AEL schemes thereby diminishing any benefits.

Publisher

MDPI AG

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3