Abstract
This study aimed to analyze between-shoulder kinematics symmetry at different load intensities considering full range of movement (ROM), mean and maximum velocities (VMEAN, VMAX), and accelerations (AMEAN, AMAX) of shoulders during phases 2 (characterized by positive acceleration and negative velocity, eccentric) and 3 (characterized by positive acceleration and velocity, concentric) of bench press exercise (BP); as well as to compare unilateral kinematics variables between the different load intensity intervals. Twenty-seven participants were evaluated during phases 2 and 3 of BP at different load intervals: interval 1 (55–75% 1-repetition maximum: 1RM), interval 2 (75–85% 1RM) and interval 3 (85–100% 1RM). Kinematics variables were determined using the Xsens MVN Link System. Results showed that full ROM was higher in left than right shoulder at all intensities (p = 0.008–0.035). VMEAN, VMAX, AMEAN, and AMAX were different in both shoulders for interval 3 during phase 2 and were lower as load intensity increased in both shoulders (p = 0.001–0.029). During phase 3, only VMAX on interval 2 was different between shoulders. Moreover, VMEAN, VMAX, AMEAN, and AMAX were greater during interval 1 compared with the others in both shoulders (p = 0.001–0.029). Therefore, there exists a kinematics asymmetry between both shoulders during phases 2 and 3 of bench press, although the acceleration was similar during both phases at all load intensities. Moreover, kinematic parameters differ between loads of 55–75% RM compared to 75–100% RM loads.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献