Computer-Aided Detection of Hypertensive Retinopathy Using Depth-Wise Separable CNN

Author:

Qureshi ImranORCID,Abbas QaisarORCID,Yan Junhua,Hussain Ayyaz,Shaheed KashifORCID,Baig Abdul RaufORCID

Abstract

Hypertensive retinopathy (HR) is a retinal disorder, linked to high blood pressure. The incidence of HR-eye illness is directly related to the severity and duration of hypertension. It is critical to identify and analyze HR at an early stage to avoid blindness. There are presently only a few computer-aided systems (CADx) designed to recognize HR. Instead, those systems concentrated on collecting features from many retinopathy-related HR lesions and then classifying them using traditional machine learning algorithms. Consequently, those CADx systems required complicated image processing methods and domain-expert knowledge. To address these issues, a new CAD-HR system is proposed to advance depth-wise separable CNN (DSC) with residual connection and a linear support vector machine (LSVM). Initially, the data augmentation approach is used on retina graphics to enhance the size of the datasets. Afterward, this DSC approach is applied to retinal images to extract robust features. The retinal samples are then classified as either HR or non-HR using an LSVM classifier as the final step. The statistical investigation of 9500 retinograph images from two publicly available and one private source is undertaken to assess the accuracy. Several experimental results demonstrate that the CAD-HR model requires less computational time and fewer parameters to categorize HR. On average, the CAD-HR achieved a sensitivity (SE) of 94%, specificity (SP) of 96%, accuracy (ACC) of 95% and area under the receiver operating curve (AUC) of 0.96. This confirms that the CAD-HR system can be used to correctly diagnose HR.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference80 articles.

1. Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report from the American Heart Association;Circulation,2016

2. Treatment of hypertension in patients with coronary artery disease: A scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension;J. Am. Coll. Cardiol.,2015

3. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images;Inf. Sci.,2018

4. Modern treatment to reduce pulmonary arterial pressure in pulmonary arterial hypertension;J. Cardiol.,2018

5. Plasma cardiotrophin-1 as a marker of hypertension and diabetes-induced target organ damage and cardiovascular risk;Medicine,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3