Automatic Detection and Classification of Hypertensive Retinopathy with Improved Convolution Neural Network and Improved SVM

Author:

Bhimavarapu Usharani1ORCID,Chintalapudi Nalini2ORCID,Battineni Gopi2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India

2. Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy

Abstract

Hypertensive retinopathy (HR) results from the microvascular retinal changes triggered by hypertension, which is the most common leading cause of preventable blindness worldwide. Therefore, it is necessary to develop an automated system for HR detection and evaluation using retinal images. We aimed to propose an automated approach to identify and categorize the various degrees of HR severity. A new network called the spatial convolution module (SCM) combines cross-channel and spatial information, and the convolution operations extract helpful features. The present model is evaluated using publicly accessible datasets ODIR, INSPIREVR, and VICAVR. We applied the augmentation to artificially increase the dataset of 1200 fundus images. The different HR severity levels of normal, mild, moderate, severe, and malignant are finally classified with the reduced time when compared to the existing models because in the proposed model, convolutional layers run only once on the input fundus images, which leads to a speedup and reduces the processing time in detecting the abnormalities in the vascular structure. According to the findings, the improved SVM had the highest detection and classification accuracy rate in the vessel classification with an accuracy of 98.99% and completed the task in 160.4 s. The ten-fold classification achieved the highest accuracy of 98.99%, i.e., 0.27 higher than the five-fold classification accuracy and the improved KNN classifier achieved an accuracy of 98.72%. When computation efficiency is a priority, the proposed model’s ability to quickly recognize different HR severity levels is significant.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3