A Systematic Review: To Increase Transportation Infrastructure Resilience to Flooding Events

Author:

Watson Grace,Ahn Jeong EunORCID

Abstract

This study investigated literature databases of Google Scholar and Scopus from 1900 to 2021 and reviewed relevant studies conducted to increase transportation infrastructure resilience to flood events. This review has three objectives: (1) determine which natural hazard or natural disaster had the most vulnerability studies; (2) identify which infrastructure type was most prevalent in studies related to flood resilience infrastructure; and (3) investigate the current stage of research. This review was conducted with three stages. Based on stage one, floods have been extremely present in research from 1981 to 2021. Based on stage two, transportation infrastructure was most studied in studies related to flood resilience. Based on stage three, this systematic review focused on a total of 133 peer-reviewed, journal articles written in English. In stage three, six research categories were identified: (1) flood risk analysis; (2) implementation of real-time flood forecasting and prediction; (3) investigation of flood impacts on transportation infrastructure; (4) vulnerability analysis of transportation infrastructure; (5) response and preparatory measures towards flood events; and (6) several other studies that could be related to transportation infrastructure resilience to flood events. Current stage of studies for increasing transportation resilience to flood events was investigated within these six categories. Current stage of studies shows efforts to advance modeling systems, improve data collections and analysis (e.g., real-time data collections, imagery analysis), enhance methodologies to assess vulnerabilities, and more.

Funder

USDOE

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference172 articles.

1. (2022, October 24). Natural Hazards, Available online: https://hazards.fema.gov/nri/natural-hazards.

2. (2022, May 16). Know and Understand Natural Disasters, Available online: https://www.cdph.ca.gov/Programs/EPO/Pages/BI_Natural-Disaster_Know-and-Understand.aspx.

3. Assessing Community Impacts of Natural Disasters;Lindell;Nat. Hazards Rev.,2003

4. (1999). Appendix A: Environmental Impacts of Natural Disasters, National Academies Press.

5. The Concept of Vulnerability and Resilience;Proag;Procedia Econ. Financ.,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3