Uniform vs. Lognormal Kinematics in Robots: Perceptual Preferences for Robotic Movements

Author:

Quintana Jose J.ORCID,Ferrer Miguel A.ORCID,Diaz MoisesORCID,Feo Jose J.ORCID,Wolniakowski AdamORCID,Miatliuk KonstantsinORCID

Abstract

Collaborative robots or cobots interact with humans in a common work environment. In cobots, one under-investigated but important issue is related to their movement and how it is perceived by humans. This paper tries to analyze whether humans prefer a robot moving in a human or in a robotic fashion. To this end, the present work lays out what differentiates the movement performed by an industrial robotic arm from that performed by a human one. The main difference lies in the fact that the robotic movement has a trapezoidal speed profile, while for the human arm, the speed profile is bell-shaped and during complex movements, it can be considered as a sum of superimposed bell-shaped movements. Based on the lognormality principle, a procedure was developed for a robotic arm to perform human-like movements. Both speed profiles were implemented in two industrial robots, namely, an ABB IRB 120 and a Universal Robot UR3. Three tests were used to study the subjects’ preference when seeing both movements and another analyzed the same when interacting with the robot by touching its ends with their fingers.

Funder

Spanish government

European Union FEDER program/funds

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Synthetic On-Air Signatures for Biometric Attack;2023 IEEE International Carnahan Conference on Security Technology (ICCST);2023-10-11

2. Conceptual Design and Control of a Robotic System for Welding;2023 24th International Carpathian Control Conference (ICCC);2023-06-12

3. Observation vs. interaction in the recognition of human-like movements;Frontiers in Robotics and AI;2023-04-10

4. Lognormality: An Open Window on Neuromotor Control;Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3