Enhanced Firefly-K-Means Clustering with Adaptive Mutation and Central Limit Theorem for Automatic Clustering of High-Dimensional Datasets

Author:

Ikotun Abiodun M.,Ezugwu Absalom E.ORCID

Abstract

Metaheuristic algorithms have been hybridized with the standard K-means to address the latter’s challenges in finding a solution to automatic clustering problems. However, the distance calculations required in the standard K-means phase of the hybrid clustering algorithms increase as the number of clusters increases, and the associated computational cost rises in proportion to the dataset dimensionality. The use of the standard K-means algorithm in the metaheuristic-based K-means hybrid algorithm for the automatic clustering of high-dimensional real-world datasets poses a great challenge to the clustering performance of the resultant hybrid algorithms in terms of computational cost. Reducing the computation time required in the K-means phase of the hybrid algorithm for the automatic clustering of high-dimensional datasets will inevitably reduce the algorithm’s complexity. In this paper, a preprocessing phase is introduced into the K-means phase of an improved firefly-based K-means hybrid algorithm using the concept of the central limit theorem to partition the high-dimensional dataset into subgroups of randomly formed subsets on which the K-means algorithm is applied to obtain representative cluster centers for the final clustering procedure. The enhanced firefly algorithm (FA) is hybridized with the CLT-based K-means algorithm to automatically determine the optimum number of cluster centroids and generate corresponding optimum initial cluster centroids for the K-means algorithm to achieve optimal global convergence. Twenty high-dimensional datasets from the UCI machine learning repository are used to investigate the performance of the proposed algorithm. The empirical results indicate that the hybrid FA-K-means clustering method demonstrates statistically significant superiority in the employed performance measures and reducing computation time cost for clustering high-dimensional dataset problems, compared to other advanced hybrid search variants.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3