Metaheuristic Algorithms to Optimal Parameters Estimation of a Model of Two-Stage Anaerobic Digestion of Corn Steep Liquor

Author:

Roeva OlympiaORCID,Chorukova Elena

Abstract

Anaerobic Digestion (AD) of wastewater for hydrogen production is a promising technology resulting in the generation of value-added products and the reduction of the organic load of wastewater. The Two-Stage Anaerobic Digestion (TSAD) has several advantages over the conventional single-stage process due to the ability to control the acidification phase in the first bioreactor, preventing the overloading and/or the inhibition of the methanogenic population in the second bioreactor. To carry out any process research and process optimization, adequate mathematical models are required. To the best of our knowledge, no mathematical models of TSAD have been published in the literature so far. Therefore, the authors’ motivation is to present a high-quality model of the TSAD corn steeping process for the sequential production of H2 and CH4 considered in this paper. Four metaheuristics, namely Genetic Algorithm (GA), Firefly Algorithm (FA), Cuckoo Search Algorithm (CS), and Coyote Optimization Algorithm (COA), have been adapted and implemented for the first time for parameter identification of a new nonlinear mathematical model of TSAD of corn steep liquor proposed here. The superiority of some of the algorithms has been confirmed by a comparison of the observed numerical results, graphical results, and statistical analysis. The simulation results show that the four metaheuristics have achieved similar results in modelling the process dynamics in the first bioreactor. In the case of modelling the second bioreactor, a better description of the process dynamics trend has been obtained by FA, although GA has acquired the lowest value of the objective function.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3