Abstract
Late-stage (post-RTL implementation) optimization is important in achieving target performance for realistic processor design. However, several challenges remain for modern out-of-order ILP (instruction-level-parallelism) processors, such as simulation speed, flexibility, and complexity problems. This paper restudy FPGA simulation as an effective performance simulation method and proposes FPGA-enhanced design flow as an effective method to address these problems. It features a late-stage aware RTL design that parameterizes various potential design options induced from early-stage optimization. This flow enables the feasibility of late-stage design space exploration. To resolve the performance accuracy of the FPGA system for peripheral designs, reference models are introduced. With an example implementation of out-of-order core running up to 80 MHz, the experimental results show that the proposed method is practical and allows the fine-grain optimization of the processor core to be more effective.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science