Imaging the Permittivity of Thin Film Materials by Using Scanning Capacitance Microscopy

Author:

Luo YongzhenORCID,Ding Xidong,Chen Tianci,Lin Guocong,Su TaoORCID,Chen Dihu

Abstract

Recently, great advances had been made by using scanning probe microscopy (SPM) to quantify the relative permittivity of thin film materials on a nanometer scale. The imaging techniques of permittivity for thin film materials with SPM, especially for photoelectric materials, have not been fully researched until now. Here, we presented a method to image permittivity of thin film materials by using a scanning capacitance microscope (SCM). This method combined the quantitative measurement by using SCM with the capacitance gradient–distance fitting curve to obtain the two-dimensional (2D) permittivity image at room temperature under atmospheric conditions. For the demonstration, a 2D permittivity image of film of molybdenum oxide (MoO3), a kind of photoelectric material, was acquired. From the image, it could be found that the average values of permittivity of MoO3 film and of MoO3 film-doped NaCl were about 8.0 and 9.5, respectively. The experimental results were quantitatively consistent with other experimental results of the same material. The reported technique here could provide a novel method for imaging the relative permittivity with nanometer resolution and be helpful for the study of photoelectric materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3