Fast Prediction of Flow Field around Airfoils Based on Deep Convolutional Neural Network

Author:

Wu Ming-YuORCID,Wu Yan,Yuan Xin-Yi,Chen Zhi-Hua,Wu Wei-Tao,Aubry Nadine

Abstract

We propose a steady-state aerodynamic data-driven method to predict the incompressible flow around airfoils of NACA (National Advisory Committee for Aeronautics) 0012-series. Using the Signed Distance Function (SDF) to parameterize the geometric and flow condition setups, the prediction core of the method is constructed essentially by a consecutive framework of a convolutional neural network (CNN) and a deconvolutional neural network (DCNN). Impact of training parameters on the behavior of the proposed CNN-DCNN model is studied, so that appropriate learning rate, mini-batch size, and random deactivation rate are specified. Tested by “unseen” airfoil geometries and far-field velocities, it is found that the prediction process is three orders of magnitudes faster than a corresponding Computational Fluid Dynamics (CFD) simulation, while relative errors are maintained lower than 1% on most of the sample points. The proposed model manages to capture the essential dynamics of the flow field, as its predictions correspond reasonably with the reconstructed field by proper orthogonal decomposition (POD). The performance and accuracy of the proposed model indicate that the deep learning-based approach has great potential as a robust predictive tool for aerodynamic design and optimization.

Funder

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3