Advancing Offshore Renewable Energy: Integrative Approaches in Floating Offshore Wind Turbine-Oscillating Water Column Systems Using Artificial Intelligence-Driven Regressive Modeling and Proportional-Integral-Derivative Control

Author:

Ahmad Irfan1,M’zoughi Fares1ORCID,Aboutalebi Payam1ORCID,Garrido Aitor J.1,Garrido Izaskun1

Affiliation:

1. Automatic Control Group—ACG, Institute of Research and Development of Processes—IIDP, Department of Automatic Control and Systems Engineering, Faculty of Engineering of Bilbao, University of the Basque Country—UPV/EHU, Po Rafael Moreno no3, 48013 Bilbao, Spain

Abstract

This research investigates the integration of Floating Offshore Wind Turbines (FOWTs) with Oscillating Water Columns (OWCs) to enhance sustainable energy generation, focusing on addressing dynamic complexities and uncertainties inherent in such systems. The novelty of this study lies in its dual approach, which integrates regressive modeling with an aero-hydro-elasto-servo-mooring coupled system with a deep data-driven network and implements a proportional-integral-derivative (PID) control mechanism to improve system stability. By employing Artificial Neural Networks (ANNs), the study circumvents the challenges of real-time closed-loop control on FOWT structures using the OpenFAST simulation tool. Data-driven models, trained on OpenFAST datasets, facilitate real-time predictive behavior analysis and decision-making. Advanced computational learning techniques, particularly ANNs, accurately replicate the dynamics of FOWT-OWC numerical models. An intelligent PID control mechanism is subsequently applied to mitigate structural vibrations, ensuring effective control. A comparative analysis with traditional barge-based FOWT systems underscores the enhanced modeling and control methodologies’ effectiveness. In this sense, the experimental results demonstrate substantial reductions in the mean oscillation amplitude, with reductions from 5% to 35% observed across various scenarios. Specifically, at a wave period from 20 s and a wind speed of 5 m/s, the fore-aft displacement was reduced by 35%, exemplifying the PID control system’s robustness and efficacy under diverse conditions. This study highlights the potential of ANN-driven modeling as an alternative to managing the complex non-linear dynamics of NREL 5 MW FOWT models and underscores the significant improvements in system stability through tailored PID gain scheduling across various operational scenarios.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3