Performance of Numerically Optimized Tuned Mass Damper with Inerter (TMDI)

Author:

Weber FelixORCID,Borchsenius Fredrik,Distl Johann,Braun Christian

Abstract

In recent years, the Tuned Mass Damper with inerter (TMDI) has received significant attention. The inerter is defined to exert a force that is in proportion to the relative acceleration of the two inerter terminals. Here, two TMDI topologies are investigated. The conventional topology is given by the inerter being in parallel to the spring and viscous damper of the TMDI. The other topology is the serial arrangement of spring, inerter and viscous damper being in parallel to the stiffness of the mass spring oscillator of the TMDI. While the first topology intends to increase the inertial force of the TMDI, the second topology aims at producing an additional degree of freedom. The considered TMDI concepts are simulated for harmonic and random excitations, with parameters set according to those described in the literature and with numerically optimized parameters which minimize the primary structure displacement response. The classical TMD is used as a benchmark. The findings are twofold. The conventional TMDI with typical inertance ratio of 1% and the very small value of 0.02% performs significantly worse than the classical TMD with the same mass ratio. In contrast, the TMDI with an additional degree of freedom can improve the mitigation of the primary structure if the inertance ratio is set very small and if the TMDI parameters are numerically optimized.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Mechanical Vibrations;Den Hartog,1934

2. Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems

3. Model-based TMD Design for the Footbridge “Inwilerstrasse” in Switzerland and its Experimental Verification;Weber;Proceedings of the Footbridge International Conference,2020

4. Evaluation of TMD Performance in Footbridges Using Human Walking Probabilistic Models

5. Structural Design of Taipei 101, the World’s Tallest Building;Poon;Proceedings of the CTBUH 2004 Seoul Conference,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3