Abstract
Networks can be used to model various aspects of our lives as well as relations among many real-world entities and objects. To detect a community structure in a network can enhance our understanding of the characteristics, properties, and inner workings of the network. Therefore, there has been significant research on detecting and evaluating community structures in networks. Many fields, including social sciences, biology, engineering, computer science, and applied mathematics, have developed various methods for analyzing and detecting community structures in networks. In this paper, a new community detection algorithm, which repeats the process of dividing a community into two smaller communities by finding a minimum cut, is proposed. The proposed algorithm is applied to some example network data and shows fairly good community detection results with comparable modularity Q values.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献