Fuzzy Multi-Mode Time–Cost–Quality Trade-Off Optimization in Construction Management of Hydraulic Structure Projects

Author:

Mendomo Meye SergesORCID,Li Guowei,Shen ZhenzhongORCID,Zhang Jingbin

Abstract

Along with the increased use of water resources, some large water conservancy projects began construction to address power supply shortages and control flooding and drainage. As investment grows, construction cycles lengthen, external environmental impacts become bigger, and civil engineering project management becomes more complex. The real aim of the hydraulic-structure engineering project model is to manage ways of delivering the project on time while maintaining reasonable quality standards and building costs, to optimize project value. We note that the trade-off between conflicting objectives in a water conservancy project in an uncertain environment is a difficult task. To simulate the relationship between a project’s construction quality and its time limit, two new piecewise functions—a double exponential function and a quadratic function—were proposed, and then a fuzzy multi-mode discrete time–cost–quality trade-off concept for water-management projects was established. This model finds the best solution to an NP-hard problem using the particle-swarm optimization algorithm (PSO). A comparison of the calculations to previous studies validates the model and its computational approach. The optimized results of a water conservation project are provided as a conceptual framework for project planning and construction timeframes.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3