A Study on Customized Prediction of Daily Illness Risk Using Medical and Meteorological Data

Author:

Kim Minji,Jang Jiwon,Jeon Seungjin,Youm Sekyoung

Abstract

This study selected the most common illnesses in children and older adults and aimed to provide a customized degree of daily risk for each illness based on patient data for specific regions and illnesses. Sample medical data of one million people provided by the National Health Insurance Corporation and information regarding the meteorological environment and atmosphere from the Korea Meteorological Administration and a public data portal using application programing interface were collected. Learning and predictions were carried out with machine learning. Models with high R2 were selected and tuned to determine the optimal hyperparameter for predicting the degree of daily risk of an illness. Illnesses with an R2 value greater than 0.65 were considered significant. For children, these consisted of acute bronchitis, the common cold, rhinitis and tonsillitis, and middle ear inflammation. For older adults, they consisted of high blood pressure and heart disease, the common cold, esophageal inflammation and gastritis, acute bronchitis, eczema and dermatitis, and chronic bronchitis. This study provides the degree of daily risk for the most common illnesses in each age group. Furthermore, the results of this study are expected to raise awareness of illnesses that occur in certain climates and to help prevent them.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. A Study on Predicting Local Cold Patients Using Meteorological Elements;Jang;Proceedings of the Korean Meteorological Society Conference,2011

2. The Era of Fourth Industrial Revolution: Healthcare Industry and ICT Technology;Choi;Telco J.,2017

3. Case Studies of Advanced Countries in the Fourth Industrial Revolution and Korea’s Response Strategy;Lee;Adv. Policy Ser.,2017

4. Policy Status and Tasks for Healthcare Big Data;Kang;Health Welf. Policy Forum,2016

5. A Prediction of Number of Patients and Risk of Disease in Each Region Based on Pharmaceutical Prescription Data;Chang;J. Korea Multimed. Soc.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3