Prediction of Sea Level Using Double Data Decomposition and Hybrid Deep Learning Model for Northern Territory, Australia

Author:

Raj Nawin1ORCID,Murali Jaishukh1ORCID,Singh-Peterson Lila2,Downs Nathan1

Affiliation:

1. School of Mathematics, Physics and Computing, Springfield Campus, University of Southern Queensland, Springfield, QLD 4300, Australia

2. School of Agriculture and Environmental Science, Springfield Campus, University of Southern Queensland, Springfield, QLD 4300, Australia

Abstract

Sea level rise (SLR) attributed to the melting of ice caps and thermal expansion of seawater is of great global significance to vast populations of people residing along the world’s coastlines. The extent of SLR’s impact on physical coastal areas is determined by multiple factors such as geographical location, coastal structure, wetland vegetation and related oceanic changes. For coastal communities at risk of inundation and coastal erosion due to SLR, the modelling and projection of future sea levels can provide the information necessary to prepare and adapt to gradual sea level rise over several years. In the following study, a new model for predicting future sea levels is presented, which focusses on two tide gauge locations (Darwin and Milner Bay) in the Northern Territory (NT), Australia. Historical data from the Australian Bureau of Meteorology (BOM) from 1990 to 2022 are used for data training and prediction using artificial intelligence models and computation of mean sea level (MSL) linear projection. The study employs a new double data decomposition approach using Multivariate Variational Mode Decomposition (MVMD) and Successive Variational Mode Decomposition (SVMD) with dimensionality reduction techniques of Principal Component Analysis (PCA) for data modelling using four artificial intelligence models (Support Vector Regression (SVR), Adaptive Boosting Regressor (AdaBoost), Multilayer Perceptron (MLP), and Convolutional Neural Network–Bidirectional Gated Recurrent Unit (CNN-BiGRU). It proposes a deep learning hybrid CNN-BiGRU model for sea level prediction, which is benchmarked by SVR, AdaBoost, and MLP. MVMD-SVMD-CNN-BiGRU hybrid models achieved the highest performance values of 0.9979 (d), 0.996 (NS), 0.9409 (L); and 0.998 (d), 0.9959 (NS), 0.9413 (L) for Milner Bay and Darwin, respectively. It also attained the lowest error values of 0.1016 (RMSE), 0.0782 (MABE), 2.3699 (RRMSE), and 2.4123 (MAPE) for Darwin and 0.0248 (RMSE), 0.0189 (MABE), 1.9901 (RRMSE), and 1.7486 (MAPE) for Milner Bay. The mean sea level (MSL) trend analysis showed a rise of 6.1 ± 1.1 mm and 5.6 ± 1.5 mm for Darwin and Milner Bay, respectively, from 1990 to 2022.

Publisher

MDPI AG

Reference90 articles.

1. Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., Merrifield, M.A., Milne, G.A., Nerem, R.S., and Nunn, P.D. (2013). Sea Level Change, Cambridge University Press.

2. Allan, R.P., Hawkins, E., Bellouin, N., and Collins, B. (2021). IPCC, 2021: Summary for Policymakers, IPCC.

3. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., and Shukla, P.R. (2022). Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

4. Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., and Weyer, N. (2019). The ocean and cryosphere in a changing climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press.

5. The rising seas;Schneider;Sci. Am.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3