Characterization of Electromagnetic Pulses Generated from Plasma Associated with Laser Filaments-Excited Aluminum Alloy Interaction

Author:

Qi Rong,Zhou ChuliangORCID,Zhang Dongdong,Song LiweiORCID,Yang Xiaojun,Gui Jiayan,Leng YuxinORCID,Tian Ye,Li Ruxin

Abstract

Femtosecond laser filament-generated plasma can generate electromagnetic pulses (EMPs). These pulses may reduce the instrument’s precision, and, hence, influence the accuracy of the experimental results. They may even cause widespread disruption by disabling of the electronic control systems or distribution networks of power plants. This study investigated the characteristics of EMPs generated from the interaction of filament-generated plasmas with a solid target in air. In this study, ultrafast laser filamentation was used to produce plasma, which was focused on a 3 mm-thick aluminum (Al) alloy target for interaction, and the spatial distribution and main contributors of the EMPs were systematically and extensively studied. The results showed that the EMPs generated from ultrafast laser filament interaction with the Al alloy target had the following characteristics: the EMP energy generated from laser filament interaction with solid targets is tens of times higher than that generated only from the femtosecond laser filament; the maximum EMP signals appeared at a 20°–80°detection angle. The relationship between the energy of EMPs and the width and energy of the laser pulses is presented and discussed. These findings are beneficial for gaining insight into the EMP generation mechanism, spatial distribution, and transmission, and for providing more information for the design of EMPs’ shielding.

Funder

National Natural Science Foundation of China

Young Talents Support Project of China Association for Science and Technology

Youth Innovation Promotion Association of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3