Measurement of strong electromagnetic pulses generated from solid targets at sub-ns kJ-class PALS laser facility

Author:

Rączka PORCID,Cikhardt JORCID,Pfeifer MORCID,Krása JORCID,Krupka MORCID,Burian TORCID,Krůs MORCID,Pisarczyk TORCID,Dostál JORCID,Dudžák RORCID,Badziak JORCID

Abstract

Abstract Measurements had been performed of strong electromagnetic pulses (EMPs) generated as a result of laser–target interaction at the sub-ns kJ-class Prague Asterix Laser System facility. Two conductive Prodyn FD5C D-dot pencil probes were used. Measurements were performed inside the experimental chamber and outside the chamber in a large chamber window 40 cm in diameter in a setup that guaranteed 6 GHz bandwidth. A very good signal-to-noise ratio (17:1) was obtained after some steps were taken to ensure proper EMP shielding of the data collection setup. The EMP signal in the time domain was found to have the form of a sharp initial spike followed by gradually decaying oscillations interspersed with some secondary spikes. The values of the vertical component of the electric field strength were estimated. The highest value recorded in this experiment was 620 180 + 260 kV m−1 at a distance of 40 cm from the target. It was observed that plastic targets—particularly the 100s of µm thick plastic foils—tend to generate stronger EMP fields than Cu and Au targets. A time-frequency analysis was performed for a typical shot, clearly showing some spectral features that appear only sometime after the start of the signal and hence indicate EMP generation from secondary sources. Electrons ejected from the target were recorded with the energies exceeding 1.5 MeV, which indicates that highly energetic processes are triggered as a result of the laser–target interaction.

Funder

Ministry of Science and Higher Education within the framework of the scientific financial resources in the year 2020 allocated for the realization of the international co-financed project

Czech Republic’s Ministry of Education, Youth and Sports

Ministerstwo Nauki i Szkolnictwa Wyższego

EU LASERLAB IV

EUROfusion Consortium

Narodowe Centrum Nauki

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3