Recent Progress in Design and Performance Analysis of Vertical-Axis Wind Turbines—A Comprehensive Review

Author:

Didane Djamal Hissein1ORCID,Behery Mostafa Radwan1,Al-Ghriybah Mohanad2ORCID,Manshoor Bukhari1

Affiliation:

1. Center for Energy and Industrial Environment Studies (CEIES), Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia

2. Department of Renewable Energy Engineering, Faculty of Engineering, Isra University, Amman 1162, Jordan

Abstract

Vertical-axis wind turbines (VAWTs) are receiving more and more attention as they involve simple design, cope better with turbulence, and are insensitive to wind direction, which has a huge impact on their cost since a yaw mechanism is not needed. However, VAWTs still suffer from low conversion efficiency. As a result, tremendous efforts are being exerted to improve their efficiency, which mainly focus on two methods, regardless of whether the study is a CFD simulation, a field test, or a lab test experiment. An active approach involves modification of the rotor itself, such as the blade design, the angle, the trailing and leading edges, the inner blades, the chord thickness, the contra-rotating rotor, etc., while the second approach involves passive techniques where the flow is directed to optimally face the downwind rotor by mounting guiding vanes such as a diffuser or other shapes at the upwind position of the rotor. Among all the techniques undertaken, the counter-rotating wind turbine (CRWT) rotor technique seems to be the most effective, with an output comparable to that of horizontal-axis wind turbines (HAWTs), while the Savonius rotor has received more attention compared to other VAWT designs. Apart from technological issues, it has also been suggested that geographical issues, such as proper site siting of a wind turbine rotor at a particular location where a uniform flow can be guaranteed, are of paramount importance to ensure an effective conversion capacity of wind turbines. Thus, this study has successfully highlighted the latest improvements in augmentation methods and has established a solid foundation for future research aimed at improving the efficiency of VAWTs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3