Computational Fluid Dynamics (CFD) Study on the Effect of the Number of Blades on the Performance of Double-Stage Savonius Rotor

Author:

Mohd Halmy Muhammad Syahmy,Didane Djamal Hissein,Afolabi Lukmon Owolabi,Al-Alimi Sami

Abstract

Wind energy is known as renewable energy with the properties of the free, abundant and readily available source of energy. Wind power has now been seen as an alternative way to generate electricity. However, the existing wind turbines to harness this energy, which is used to transform wind kinetic energy into electricity still suffer low conversion capabilities. This study is therefore set out to evaluate the performance of a double-stage Savonius-type rotor while aiming to examine the effectiveness of this technique in increasing the efficiency while overcoming the inherent low inefficiency of the Savonius rotor. The simulations involved the use of the K-omega SST as the turbulent viscosity model. Three simulation models based on a different number of blades on the double-stage model are tested in terms of torque, power, torque coefficient and power coefficient. It is concluded that the double-stage technique was capable of enhancing the performance of the Savonius rotor. It was observed that more blades on a double-stage rotor have a negative effect on the performance of the Savonius rotor in terms of both torque efficiency and power efficiency. Comparing the three models, it was found that the two-blade model of the double-stage produced more torque and power output compared to the other three-blade and four-blade models of the double-stage Savonius rotor. Furthermore, the highest conversion efficiency in terms of power among all models occurs at the TSR of 0.6 with a corresponding maximum power coefficient of 18.4%.

Publisher

Akademia Baru Publishing

Subject

Fluid Flow and Transfer Processes,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3