Analysis of Rock Mass Energy Characteristics and Induced Disasters Considering the Blasting Superposition Effect

Author:

Chen Lu1ORCID,Yang Xiaocong1,Guo Lijie1ORCID,Yu Shibo1

Affiliation:

1. BGRIMM Technology Group, Beijing 102628, China

Abstract

Upon reaching deeper levels of extraction, dynamic hazards such as rockburst become more pronounced, with the high energy storage characteristics of rock masses in high-stress environments being the fundamental factor behind rockburst disasters. Additionally, deep-seated mineral extraction commonly involves drilling and blasting methods, where the vibrational energy generated by mining explosions combines with the elastic energy of rock masses, leading to a sudden growth in the risk and intensity of rockburst disasters. This paper, with deep mining at Sanshandao Gold Mine as the focal point, systematically investigates the impact of blasting vibrations on rockburst disasters in deep mines. Initially, based on extensive data on measured geostress considering the tri-arch cross-section form of deep tunnels, the elastic energy storage of the surrounding rocks in deep tunnels was calculated. The results indicate that the maximum energy storage of the surrounding rocks occurs at the bottom of the tunnel, with the peak accumulation position located at a distance of five times the tunnel radius. On this basis, the Map3D numerical simulation analysis was adopted to systematically capture the accumulation behavior and distribution characteristics of disturbance energy. Subsequently, by conducting the dynamic impact experiments with an improved Split Hopkinson pressure bar (SHPB) and monitoring vibration signals at various locations, the paper provides insights into the propagation patterns of impact energy in a long sample (400 mm in length and 50 mm in diameter). Analysis of the scattering behavior of vibrational energy reveals that the combined portion of blasting vibration energy constitutes 60% of the total vibrational energy. Finally, a rockburst disaster evaluation model based on energy accumulations was proposed to analyze the rockburst tendencies around deep tunnels. The results indicated that the disaster-driven energy increased by 19.9% and 12.2% at different places on the roadway. Also, the probability and intensity of a rockburst would be raised.

Funder

National Natural Science Foundation

Beijing Nova Program

Publisher

MDPI AG

Reference24 articles.

1. Novel ideas and disruptive technologies for the exploration and research of deep earth;Xie;Adv. Eng. Sci.,2017

2. Dynamic problems in deep exploitation of hard rock metal mines;Li;Chin. J. Nonferrous Met.,2011

3. Rock Burst Intensity Classification Based on the Radiated Energy with Damage Intensity at Jinping II Hydropower Station, China;Chen;Rock Mech. Rock Eng.,2015

4. A new energy index for evaluating the tendency of rockburst and its engineering application;Xu;Eng. Geol.,2017

5. Research on the Energy Criterion for Rockbursts Induced by Broken Hard and Thick Rock Strata and Its Application;Wang;Geotech. Geol. Eng.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3