Easer Hole Design Method Based on the Principle of Minimum Burden at the Hole Bottom and Its Application in Tunnel Blasting

Author:

Wu Xiaodong1ORCID,Jia Jiayin2,Wang Likun1ORCID,Zhou Shijun2,Wu Haojun1,Zhao Xinxiang2,Gong Min1

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Chongqing Zhonghuan Construction Co. Ltd., Chongqing 401120, China

Abstract

Current tunnel blasting hole layouts are mostly designed based on a two-dimensional plane at the workface, without considering the distribution of the minimum burden at the bottom of the blast holes. This results in a significant number of residual holes at the bottom, reducing excavation efficiency. To address this issue, this study proposes an easer hole design method based on the principle of minimum burden at the hole bottom. The method involved the arithmetic distribution for the minimum burden at the bottom of easer holes, using the difficulty of rock breaking as the design principle for hole positioning. Through theoretical analysis, numerical simulation, and field tests, it is proposed that the minimum burden at the bottom of the holes should increase progressively with the initiation sequence, and the relationship between burden distribution and blasting effect was investigated. This study indicates that using the new design principle achieves better blasting results than the model with an evenly distributed burden. When the control ratio of the minimum burden at the bottom of each row of easer holes is 1.3, an average residual hole depth of 36.7 cm and a maximum damage volume of 4.638 m3 can be achieved, yielding the best overall blasting effect. The application of this blasting scheme in the field significantly improved the residual hole problem, reducing the average residual hole depth to 39.5 cm, which is a 43.4% reduction compared to the previous scheme. Additionally, the utilization rate of blast holes in the new scheme increased to 91.3%, an improvement of 11.0% over the previous scheme. This study provides new insights and methods for tunnel blasting hole layout design, offering significant engineering application value.

Funder

Youth Fund of the National Natural Science Foundation of China

China Postdoctoral Science Foundation

China Postdoctoral Science Foundation fellowship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3