Abstract
Er-doped optical fiber (EDF) with ultra-broad gain bandwidth is urgently needed given the rapid advancement of optical communication. However, the weak crystal field of the host silica glass severely restricts the bandwidth of traditional EDF at 1.5 μm. In this study, we theoretically explored the introduction of PbS nanomaterials in the silica network assisted with the non-bridging oxygen. This can significantly increase the crystal field strength of Er3+ ions in the local structure, leading to their energy level splitting and expanding the fluorescence bandwidth. Additionally, the PbS/Er co-doped optical fiber (PEDF) with improved fluorescence and gain characteristics was fabricated using modified chemical vapor deposition combined with the atomic layer deposition technique. The presence of PbS nanomaterials in the fiber core region, which had an average size of 4 nm, causes the 4I13/2 energy level of Er3+ ions to divide, increasing the fluorescence bandwidth from 32 to 39 nm. Notably, the gain bandwidth of PEDF greater than 20 dB increased by approximately 12 nm compared to that of EDF. The obtained PEDF would play an important role in the optical fiber amplifier and laser applications.
Funder
National Key Research and Development Projects
Natural Science Foundation of China
111 Project
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献