Abstract
In this study, PbS/Er co-doped fibers (PEDFs) were fabricated by atomic layer deposition (ALD) combined with modified chemical vapor deposition (MCVD). A pumping scheme based on two-photon absorption at 1310 nm of PEDF is proposed for L + band amplification. Through the theoretical analysis, the local environment of Er3+ is changed due to the co-doping of PbS, which improves the two-photon absorption efficiency near 1300 nm. Compared with the 980 nm pump, the PEDFs excited by the 1310 nm pump show better amplification performance in the L + band. And in a bi-directional pumping system, PEDF achieves over 22 dB of gain in the whole L band. In particular, the bandwidth of over 20 dB gain was extended to 1627 nm with a noise figure as low as 4.9 dB. To the best of our knowledge, this is the first time that a high-gain bandwidth of L band amplification has been extended to 1627 nm. The results of unsaturated loss also show that PbS co-doping improves the two-photon absorption efficiency of PEDF to broaden the amplification bandwidth of L + band. These results demonstrate that an effective L + band amplification method is practically provided for future ultra-wideband optical communications.
Funder
National Key Research and Development Program of China