Accumulation of Ascorbic Acid in Tomato Cell Culture: Influence of the Genotype, Source Explant and Time of In Vitro Cultivation

Author:

Minutolo Maria,Chiaiese PasqualeORCID,Di Matteo AntonioORCID,Errico Angela,Corrado Giandomenico

Abstract

The production and commercialization of natural antioxidants is gaining increasing importance due to their wide range of biological effects and applications. In vitro cell culture is a valuable source of plant bioactive compounds, especially those highly dependent on environmental factors. Nonetheless, research on the accumulation in plant cultured cells of water-soluble antioxidant vitamins, such as the ascorbic acid (AsA), is very limited. Tomato fruits are a main dietary source of vitamin C and in this work, we explored the potential of in vitro cultured cells for AsA accumulation. Specifically, using a full factorial design, we examined the effect of the source explant, the time in tissue culture and the genetic difference present in two Introgression Line (IL7-3 and IL12-4) that harbor Quantitative Trait Loci (QTLs) for ascorbic acid in fruits. Moreover, we performed an expression analysis of genes involved in AsA metabolism to highlight the molecular mechanisms that can account for the difference between fruit explants and calli. Our work indicated that cultured tomato cells accumulate AsA well beyond the amount present in fruits and that the three factors under investigation and their interaction significantly influence AsA accumulation. The time in tissue culture is the main single factor and, different from the expectations for secondary metabolites, explants from unripe, mature green fruits provided the highest increase in AsA. Moreover, in controlled conditions the genetic differences between the ILs and the control genotype are less relevant for calli cultivated for longer time. Our work showed the potential of tomato cell culture to produce AsA and prompt further refinements towards its possible large-scale exploitation.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3