Fe Porphyrin-Based SOD Mimic and Redox-Active Compound, (OH)FeTnHex-2-PyP4+, in a Rodent Ischemic Stroke (MCAO) Model: Efficacy and Pharmacokinetics as Compared to Its Mn Analogue, (H2O)MnTnHex-2-PyP5+

Author:

Li Litao,Tovmasyan Artak,Sheng Huaxin,Xu BinORCID,Sampaio Romulo S.,Reboucas Julio S.ORCID,Warner David S.,Batinic-Haberle Ines,Spasojevic Ivan

Abstract

Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, (H2O)MnTnHex-2-PyP5+ (MnHex) carrying long hexyl chains, is a lipophilic mimic of superoxide dismutase (SOD) and a redox-active drug candidate. MnHex crosses the blood–brain barrier, and improved neurologic outcome and decreased infarct size and inflammation in a rat middle cerebral artery occlusion (MCAO) ischemic stroke model. Yet, the dose and the therapeutic efficacy of Mn porphyrin were limited by an adverse effect of arterial hypotension. An equally lipophilic Fe analog, (OH)FeTnHex-2-PyP4+ (FeHex), is as redox-active and potent SOD mimic in vitro. With different coordination geometry of the metal site, FeHex has one hydroxo (OH) ligand (instead of water) bound to the Fe center in the axial position. It has ~2 orders of magnitude higher efficacy than MnHex in an SOD-deficient E. coli model of oxidative stress. In vivo, it does not cause arterial hypotension and is less toxic to mice. We thus evaluated FeHex versus MnHex in a rodent MCAO model. We first performed short- and long-term pharmacokinetics (PK) of both porphyrins in the plasma, brain, and liver of rats and mice. Given that damage to the brain during stroke occurs very rapidly, fast delivery of a sufficient dose of drug is important. Therefore, we aimed to demonstrate if, and how fast after reperfusion, Fe porphyrin reaches the brain relative to the Mn analog. A markedly different plasma half-life was found with FeHex (~23 h) than with MnHex (~1.4 h), which resulted in a more than 2-fold higher plasma exposure (AUC) in a 7-day twice-daily treatment of rats. The increased plasma half-life is explained by the much lower liver retention of FeHex than typically found in Mn analogs. In the brain, a 3-day mouse PK study showed similar levels of MnHex and FeHex. The same result was obtained in a 7-day rat PK study, despite the higher plasma exposure of FeHex. Importantly, in a short-term PK study with treatment starting 2 h post MCAO, both Fe- and Mn- analogs distributed at a higher level to the injured brain hemisphere, with a more pronounced effect observed with FeHex. While a 3-day mouse MCAO study suggested the efficacy of Fe porphyrin, in a 7-day rat MCAO study, Mn-, but not Fe porphyrin, was efficacious. The observed lack of FeHex efficacy was discussed in terms of significant differences in the chemistry of Fe vs. the Mn center of metalloporphyrin; relative to MnHex, FeHex has the propensity for axial coordination, which in vivo would preclude the reactivity of the Fe center towards small reactive species.

Funder

National Institutes of Health

CAPES

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3